A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films.

نویسندگان

  • Claudimir Lucio do Lago
  • Heron Dominguez Torres da Silva
  • Carlos Antonio Neves
  • José Geraldo Alves Brito-Neto
  • José Alberto Fracassi da Silva
چکیده

A new microfabrication process based on a xerographic process is described. A laser printer is used to selectively deposit toner on a polyester film, which is subsequently laminated against another polyester film. The toner layer binds the two polyester films and allows the blank regions to become channels for microfluidics. These software-outlined channels are approximately 6 microm deep. Approximately twice this depth is obtained by laminating two printed films. The resulting devices were not significantly damaged after 24 h of exposure to aqueous solutions of H3PO4, NaOH, methanol, acetonitrile, or sodium dodecyl sulfate. Electric tests with an impedance analyzer and microchannels filled with KCl solution demonstrated that (1) wide channels suffer from deformation of the top and bottom walls due to the lamination of the polyester films and (2) the toner walls are somewhat porous. Although these drawbacks limit the maximum width of a channel and the minimum distance between two channels, the process is an attractive option to other expensive, laborious, and time-consuming methods for microchannels fabrication. The process has been used to implement devices for electrospray tip and capillary electrophoresis with contactless conductivity detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance Properties of Printed Polyolefin Films using Water-Based Inks

During recent decades due to the increase in pollutants release from various industries, reduction or elimination of volatile organic compounds VOCs has become one of the main purposes of researches in order to protect the environment. In this research, two acrylic emulsion resins and an adhesion promoter polyester emulsion resin were used to optimize water-based printing ink formulation for pr...

متن کامل

Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.

We present a novel and simple method for patterning oxygen-sensitive polystyrene thin films and demonstrate its potential for integration with microfluidic lab-on-a-chip devices. Optical oxygen sensing films composed of polystyrene with an embedded luminescent oxygen-sensitive dye present a convenient option for the measurement of oxygen levels in microfluidic and lab-on-a-chip devices; however...

متن کامل

Microfluidic devices obtained by thermal toner transferring on glass substrate.

A new process for the manufacture of microfluidic devices based on deposition of laser-printing toner on glass substrates is described. It is an alternative method to the toner on polyester film (toner-polyester) one, previously introduced. Commercial laser printers cannot print directly on glass, thus the toner must first be printed on a special paper and then transferred by heating under pres...

متن کامل

Rapid Fabrication of Electrophoretic Microfluidic Devices from Polyester, Adhesives and Gold Leaf

In the last decade, the microfluidic community has witnessed an evolution in fabrication methodologies that deviate from using conventional glass and polymer-based materials. A leading example within this group is the print, cut and laminate (PCL) approach, which entails the laser cutting of microfluidic architecture into ink toner-laden polyester sheets, followed by the lamination of these lay...

متن کامل

Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.

Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 75 15  شماره 

صفحات  -

تاریخ انتشار 2003